Search this site
English
Contact Us

Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure

By Jin, Heng-chao; Sun, Qian; Wang, Ji-tong; Ma, Chen; Ling, Li-cheng; Qiao, Wen-ming
Published in New Carbon Materials 2021

Abstract

Multi-component porous Si-SiOx (pSi) consisting of Si, SiO and SiO2 was formed by the pretreatment of SiO at 950 °C for 3 h in an inert atmosphere (He) using a disproportionation reaction. Hybrids of pSi and carbon nanofibers (pSi-CNFs) with a core-shell structure were prepared by catalytic chemical vapor deposition (CVD) using Fe-Ni species as the catalyst and a mixture of CO/H2/C2H4 (volumetric ratio 3:1:1) as the reactant for 0.5, 1 and 2 h, and were characterized by SEM, TEM, EDS, XRD, Raman spectroscopy and XPS. Results indicate that the pSi-CNF particle sizes are 5−20 μ m with the diameters of the CNFs being 5−40 nm. The CNFs are uniformly coated on the surface of the pSi to form a core-shell structure. Electrochemical performance testing shows that the reversible capacity of the pSi-CNF (0.5 h) remains at 1 411 mAh.g−1 and the capacity retention is 74% after 100 cycles at a current density of 0.2 A.g−1. The reversible capacity remains at 735 mAh.g−1 at a current density of 1 A g−1 after 300 cycles with a capacity retention of 86%. In the pSi, Si and SiO provide the electrochemical reversible capacity. The core-shell structure with the CNF coating effectively improves the conductivity of the composites, and also inhibits the volume expansion of silicon to maintain the integrity of the core shell structure.

Read » Back