Search this site
English
Contact Us

Effect of fluxing chemical: An option for Zn–5wt.%Al alloy coating on wire surface by single hot dip process

By Manna, M.
Published in Surface and Coatings Technology 2011

Abstract

The corrosion of wire is one of the primary causes for premature failure. The ideal way to overcome this problem is to provide corrosion protection right at the time of manufacturing. It is well established fact that Zn–5 wt.% Al alloy coating on steel surface provides much better protection against corrosion than the conventional pure Zn coating. Conventional fluxing operation is done on wire surface using zinc and ammonium chloride mixture before dipping in molten zinc bath. Galvanization bath temperature of about 415 °C for Zn–5 wt.% Al alloy coating on wire surface develops black spots of AlCl3 when conventional flux is used. Double dip process is being followed for Zn alloy coating on wire surface due to non availability of suitable flux. An effort has been made to develop a suitable flux to obtain Zn–5 wt.% Al alloy coating on wire surface by single hot dip process. A salt mixture (containing zinc, ammonium, sodium, potassium, cobalt and lead chloride) was formulated based on the decomposition temperature of individual chloride salts. Differential thermal and thermo gravimetric analysis indicate the temperatures for complete decomposition of conventional and formulated flux are 445 and 410 °C, respectively. The lower decomposition temperature of formulated flux is ensured black spot free Zn–5 wt.% Al alloy coating. Alloy coated wire consists of alternative layers of zinc rich and aluminium rich phases. The performance of alloy coated wires has been evaluated by salt spray and Tafel tests. The alloy coated wire shows around 4 times improvement of corrosion performance against aggressive chloride environment compared to pure zinc coated wire. This can be attributed to the fact that aluminium rich phase prevents dissolution of zinc rich phase.

Read Article » Back