Search this site
English
Contact Us

Effect of Solution Concentration, Surface Bias and Protonation on the Dynamic Response of Amplitude-Modulated Atomic Force Microscopy in Water

By Wu, Yan; Gupta, Chaitanya & Shannon, Mark A.
Published in Langmuir 2008

Abstract

The dynamic response of amplitude-modulated atomic force microscopy (AM-AFM) is studied at the solid/water interface with respect to changes in ionic concentration, applied surface potential, and surface protonation. Each affects the electric double layer in the solution, charge on the tip and the sample surface, and thus the forces affecting the dynamic response. A theoretical model is developed to relate the effective stiffness and hydrodynamic damping of the AFM cantilever that is due to the tip/surface interaction with the phase and amplitude signals measured in the AM-AFM experiments. The phase and amplitude of an oscillating cantilever are measured as a function of tip-sample distance in three experiments: mica surface in potassium nitrate solutions with different concentrations, biased gold surface in potassium nitrate solution, and carboxylic acid-terminated self-assembled monolayers (SAMs) on gold in potassium nitrate pH buffers. Results show that, over the range where the higher harmonic modes of the oscillation are negligible, the effective stiffness of the AFM cantilever increases to a maximum as the tip approaches the surface before declining again as a result of the repulsive electrical double layer interaction. For attractive electrical double-layer interactions, the effective stiffness declines monotonically as the tip approaches the surface. Similarly, the hydrodynamic damping of the tip increases and then decreases as the tip approaches the solid/water interface, with the magnitude depending on the species present in the solution.

Read Article » Back