Search this site
English
Contact Us

Characterization of sol–gel coated 316L stainless steel for biomedical applications

By Hosseinalipour, S.M.; Ershad-langroudi, A.; Hayati, Amir Nemati & Nabizade-Haghighi, A.M.
Published in Progress in Organic Coatings 2010

Abstract

Silica based organic–inorganic hybrid coatings were deposited on 316L stainless steel by sol–gel technique. The hybrid sols were prepared by hydrolysis and condensation of 3-methacryloxypropyltrimethoxysilane (TMSM) and tetraethylorthosilicate (TEOS) at different molar ratios. Electrochemical experiments were performed to evaluate the corrosion resistance properties of the coatings. Structural characterization of the coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Contact angle measurement and cell morphology assay were performed to investigate the hydrophilicity and in vitro cytotoxicity of the coatings, respectively. The results indicate formation of a crack-free and highly adherent film acting as a protective barrier against the physiological medium. Corrosion resistance of hybrid coatings was influenced by the molar ratios of TMSM:TEOS. The best corrosion protection was obtained at TMSM:TEOS molar ratio of 1:1. Sol–gel coatings enhanced the hydrophilicity of 316L steel surfaces. Also, these coatings showed non-toxicity for L929 cells.

Read Article » Back