Calculating corrosion rates using LPR and EIS

Andrew McCaskill
Outline

• Summary of Linear Polarization Resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS)
• Demonstration of performing LPR and EIS experiments
• How to calculate the corrosion rate from the data
Linear Polarization Resistance

- LPR is an “active” technique
- It is fast and relatively simple
- Must have stable Open Circuit Potential (OCP)
- Scan over a small potential range relative to OCP to maintain linearity
- Slope of Voltage (V) vs. Current (I) is polarization resistance (Rp)
Linear Polarization Resistance

1. Monitor OCP and allow to stabilize.

2. Apply initial Voltage that is 10-15 mV negative of OCP.

3. Scan at a slow scan rate (~0.125 mV/s) to a final voltage that is 10-15 mV positive of OCP and monitor the current.

4. Plot Voltage (Y-axis) versus Current (X-axis), and measure the slope which is \(R_p \) (\(V=IR \))

5. Convert \(R_p \) to \(i_{corr} \) using the Stern-Geary Equation.

6. Convert \(i_{corr} \) to Corrosion Rate.
Calculation of I_{CORR} from R_P

Stern-Geary Equation

$$\Delta V/\Delta i = R_P = \beta_a\beta_c/2.3 \ i_{\text{CORR}} (\beta_a + \beta_c)$$

Where

$R_P = $ Slope at the origin of the Polarization Resistance Plot in ohms or ohms-cm2

$i_{\text{CORR}} = $ Corrosion Current, Amperes or Amperes/cm2.

$\beta_a, \beta_c = $ Tafel Constants from a Tafel Curve, volts/decade of current.

Note: The area of the electrode must be taken into account
Calculation of Corrosion Rate from I_{CORR}

- Corrosion Rate (mpy) = 0.13 I_{corr} (EW)/d

Where

- mpy is milli-inches per year
- EW is the equivalent weight
- d is the density in g/cm3
Electrochemical Impedance Spectroscopy

- EIS is measured by applying an AC potential and then measuring the resulting current and phase angle through the cell.
- Measured using a small excitation signal so that the cell's response is pseudo-linear, \(\sim 10 \) mV.
Electrochemical Impedance Spectroscopy

- Polarization resistance can be found through the resulting data using equivalent circuit modeling