Electrochemical Impedance at a rotating disk electrode

Perspective and goal

- Perspective:
 - Researcher interested in using EIS at RDEs
 - Basic echem understanding
 - Some EIS exposure

• Goal:

- Provide an introduction and practical framework to run EIS at RDEs.

Topics

- Steady state mass transfer
- RDE basics and the Levich equation
- Nernst diffusion layer (NDL) and the porous bounded Warburg

Application

- Electroactive species in biofilms
- Impedance behavior of electrochemically active biofilms (EAB) at an RDE

Why use an RDE?

- Achieve the steady state mass transfer condition:
 - $i = nFA(D/\delta)(C_{bulk} C_{surface})$
 - $i_L = nFA(D/\delta)(C_{bulk})$ where $C_{surface}$ is zero
 - Current is limited by the mass transfer rate
 - Electrode potential is predicted by the Nernst equation
 - "steady state" = does not change with time
- Difficult to achieve in a stationary system:
 - $\delta(t) \sim (Dt)^{1/2}$
 - t is time elapsed after a large potential step
 - Derived from the Cottrell equation

Source: Bard and Faulkner, "Electrochemical Methods", Chapter 1, Wiley, 2001.

Difficulty with stationary systems

- Background convection impacts the current measurement
 - After t > 20s, becomes more pronounced
 - Thermal gradients, vibration, other external factors
- The transient current behavior and background convection influence conflicts with the EIS stability requirement, especially when wanting to run EIS at a non-zero DC current
- EIS generally limited to running at the open circuit potential for diffusion-limited stationary systems

Why use an RDE?

 Gives you a reproducible and well-defined way of introducing convection to control diffusion of electroactive species near the electrode surface

Rotated disk theory

- disk electrode (blue) is embedded in a larger, non-conducting shroud
- entire assembly is rotated (red arrow)
- Solution is drawn up along the axis of rotation and past the electrode (black arrows)
- There is laminar (i.e., smooth) flow past the electrode surface
- The electrode potential is set to the limiting current region

+	\rightarrow	\rightarrow
Ś		
	\mathcal{A}	

Rotated disk theory

- solution at the surface is dragged along by the rotating disk
 - Hydrodynamic layer, y_h
- there is a thin layer that is unstirred
 - Nernst diffusion layer, δ
- $y_h/\delta = 2(v/D)^{1/3}$
 - NDL is ~5% of hydrodynamic layer in water for an electroactive species such as ferricyanide

Source: Bard and Faulkner, "Electrochemical Methods", Chapter 9, Wiley, 2001.

Rotated disk theory

- Limiting current, i_L, is given by the Levich equation
 - $-i_{L} = 0.62 nFAD^{2/3} \omega^{1/2} v^{-1/6} C_{bulk}$
 - Levich equation is the steady state solution to the convectivediffusion system
- Combining the Levich equation with our earlier equation* yields:

$$\delta = 1.61 \cdot D^{1/3} r^{-1/2} v^{1/6}$$

$$\delta = \text{Diffusion Layer Thickness}$$

$$D = \text{Diffusion coefficient}$$

$$r = \text{rotation rate (rad/s)}$$

$$v = \text{viscosity}$$

Porous bounded Warburg

- The hydrodynamics described for RDEs fits the requisites for a 'Porous Bounded Warburg':
 - There is a thin layer of unstirred solution next to the electrode
 - Large, stirred, homogeneous source of material outside that layer
 - Between these regions there is a (virtual) membrane that is porous to the diffusing molecule.
- Sometimes referred to as the Nernst circuit element because it fits the model of the Nernst Diffusion Layer.

11

Porous bounded Warburg

Transient diffusion layer thickness

=

Nernst diffusion layer thickness

 $\Delta x \approx \sqrt{D \cdot \Delta t} = \sqrt{D/f}$

 $\delta = 1.61 \cdot D^{1/3} r^{-1/2} v^{1/6}$

Porous bounded Warburg

- In our basics of EIS application note¹, this is described as:
 - "At high frequencies, the Warburg impedance is small since diffusing reactants don't have to move very far."
 - "At low frequencies, the reactants have to diffuse farther, increasing the Warburg impedance."

13

Porous bounded Warburg

Transient diffusion layer thickness

Nernst diffusion layer thickness

 $\Delta x \approx \sqrt{D \cdot \Delta t} = \sqrt{D/f}$

 $\delta = 1.61 \cdot D^{1/3} r^{-1/2} v^{1/6}$

the diffusion layer thickness is "bounded" by the steady state limit (NDL)

Porous bounded Warburg

- Characterized by two parameters, B and Y_o.
- The equation for Z is shown here, along with the gruesome definitions of B and Y₀.
- The parameter B (in sec^{1/2}) is a measure of the time it takes for the reactant to diffuse across the NDL.
- B depends upon the NDL thickness, which in turn, depends upon the rotation speed (r) of the electrode
- Y_o is the magnitude of the admittance at a frequency of 0.16 Hz (or angular frequency of 1 rad/s), proportional to the Warburg coefficient¹, σ.

$$Z = \left[(1/Y_0) / \sqrt{(j \cdot \omega)} \right] \tanh\left\{ B \sqrt{(j \cdot \omega)} \right\}$$
$$B = \delta / \sqrt{D} = 1.61 \cdot r^{-1/2} \cdot (\nu / D)^{1/6}$$
$$Y_0 = \frac{n^2 F^2 A}{RT \left(\frac{1}{C_0 D_0^{1/2}} + \frac{1}{C_R D_R^{1/2}} \right)}$$

$$Y_0 = \frac{1}{\sigma\sqrt{2}}$$

EIS setup in the Gamry software

Acquisition: Framework

Potentiostatic EIS	
Default Save Resto	ore OK Cancel
Pstat	
Test <u>I</u> dentifier	Potentiostatic EIS
Output <u>F</u> ile	EISPOT.DTA
<u>N</u> otes	~
Initial Freg. (Hz)	100000
Final Freg. (Hz)	0.2
Points/ <u>d</u> ecade	10
AC <u>V</u> oltage (mV rms)	10
DC <u>V</u> oltage (V)	0 C vs Eref 🕫 vs Eoc
<u>A</u> rea (cm^2)	1
Conditioning	□ Off Time(s) 15 E(V) 0
Init. De <u>l</u> ay	♥ On Time(s) 100 Stab.(mV/s) 0
Estimated Z (ohms)	100
Optimize for:	C Fast © Normal C Low Noise

Analysis: Echem Analyst

📆 Impedance Model Editor - [PBW.MDL]		$ \Box$ \times
<u>F</u> ile <u>T</u> ools <u>A</u> bout		
12 🚘 🖬 🕸		
		G
Bisquert Open(BTO) Bisquert Short(BTS) Unified (UTL)		
R.E.	Parameter Parameter Name: Yo Initial Value: 0 Lower Limit Test Enable 0.00E+00 \$* Upper Limit Test Enable 0.00E+00 \$*	S*s^(1/2) s^(1/2) s^(1/2) <u>Cancel</u>

Ŵ

Sequence of EIS experiments at increasing rotation rates

16

Electroactive compounds in biofilms

$$FMN + 2e^- + 2H^+ \leftrightarrow H_2FMN$$

$$E^{\circ}$$
 = -411 mV_{Ag/AgCl}

*Fredrickson JK, et al. 2008. Towards environmental systems biology of *Shewanella*. Nat Rev Microbiol 6:592-603.

Considerations before EIS-RDE experiments

- Run CVs first at varying rotation rates and bulk concentrations
- Based off CVs, select a suitable DC voltage based such as:
 - The percentage of limiting current¹
 - $-E_{1/2}$ where current is half the limiting current value
 - An operating voltage you'd like to mimic
 - Open circuit potential
- AC voltage should be small enough to maintain linearity at the chosen DC voltage
- 100 kHz to 100 mHz is generally a good starting frequency range

Selecting initial CV parameters

- Voltage window:
 - within a known working region
 - Starts in a region without faradaic current
 - Stops at the working region limit or when limiting current is observed
- Scan rate:
 - 100 mV/s initially, slower if hysteresis is visible
- Cycle #:
 - Usually two cycles to ensure stability
- Rotation rate:
 - Low to high, dictated by RPM rating of the RDE
 - Look for stubborn bubbles trapped on the electrode surface

Levich behavior in practice

 $FMN + 2e^- + 2H^+ \leftrightarrow H_2FMN$ $E^{o'} = -411 \text{ mV}_{Ag/AgCl}$

21

Increasing rotation rate

Increasing rotation rate

24

Geobacter sulfurreducens biofilm on electrodes

- G. sulfurreducens, an oxygen-intolerant species of bacteria able to grow as biofilms on electrodes¹.
- Biofilm metabolizes acetate (a source of organic carbon).

Acetate $\xrightarrow{\text{biofilm}}$ > CO₂ + protons + electrons

Bulk Flux of 1 Flux of H⁺ Flux of e⁻ Biofilm 2 (t⁺) Electrode

Photograph of biofilm grown on a glassy carbon rotating disk electrode

¹Bond, D.R. and Lovley, D.R., *Appl. Environ. Microb.* 2003, **69**(3), 1548–1555.

Current is a proxy for biofilm respiration rate

- For G. sulfurreducens biofilm, the acetate half-reaction is activated above -0.4 V_{Ag/AgCl}.
- The electrode potential needs to be polarized above this to allow biofilm growth.
- G. sulfurreducens cells are added.
- Cells that attach to the electrode form the initial biofilm.
- The initial biofilm metabolizes acetate and produces electrons at an increasing rate.

Biofilm CV

- During biofilm growth, the chronoamperometry script can be stopped without damaging the biofilm.
- Run cyclic voltammetry script (scan rate of 30 mV/s)
- A sharp increase in current is observed with several redox peaks superimposed
- Formal potential for acetate oxidation is -483 mV_{Ag/AgCl}

Turnover CV

- 'Turnover' refers to microbial turnover of the electron donor (acetate) during CV
- 'Catalytic current' refers to measured current caused by renewal of the reduced mediator by microbial turnover
- Turnover CVs have a characteristic sigmoidal voltammogram.

Non-turnover CV

- 'Non-turnover' refers to the absence of microbial turnover.
- Usually achieved by removing the electron donor (acetate)
- Also referred to as CV under 'starving conditions'
- Voltammograms lose the sigmoidal shape
- Redox current peaks appear

Acetate oxidation by biofilm

Acetate oxidation by biofilm

Lower acetate bulk concentration

- Track the biofilm impedance during a transition from turnover to non-turnover conditions
 - A: fully turnover
 - B: partially non-turnover
 - C: completely non-turnover

Rotation independent impedance response

By modulating both rotation rate and bulk acetate concentration, we identified a pseudo-capacitance tied to bound mediators in the biofilm

Summary

- The rotated disk electrode is one more tool in your electrochemical toolbox.
- It is well founded in theory, and can be used for simple voltammetric or potentiodynamic scans, as well as for impedance studies.
- When diffusion is modeled in an EIS experiment, the Porous Bounded Warburg or Nernst circuit element is the proper one to use.
- For simple systems, excellent fits can be obtained over a wide range of rotation rates.
- For complex systems, rotation-(in)dependent behavior can help point you in the right direction.
- Varying the rotation rate can be one way to test the validity of your model!

QUESTIONS?