

Customizing Electrochemical Experiments with the

Explain™ Scripting Language

Introduction

Gamry Instruments has long given you the ability to modify your standard experiments as needed, or even develop your

own experiments. All of our experimental scripts are written using an open-source scripting language, developed by

Gamry, called Explain™.

The following discussion introduces the major ideas used in the Explain scripting language. The intent is to enable you to

customize Explain scripts for your unique purposes. This note is not intended to serve as a complete reference for the

Explain language. The On-line Help in the Gamry Framework™ software provides reference material both on the

structure of the Explain scripting language and the functions supported within Explain. Also see the application note

“Programming Reference for the Explain Scripting Language”.

A few common customizations are detailed in our note “Commonly Requested Changes to Explain™ Scripts.” You may

find that the changes you need are described in that document. You can download all of these application notes from

www.gamry.com/application-notes/.

Data-acquisition, of course, is only one part of the experiment. Data-analysis is also important. Gamry uses the Echem

Analyst™ software platform to perform the analysis portion of the experiment. The Echem Analyst software consists of a

number of scripts written in Microsoft
®

 Visual Basic
®

 for Applications (VBA). Like Explain scripts, these VBA scripts can be

opened and modified for special applications.

The Three Levels of the Gamry Framework™ Software

The Gamry Framework™ environment contains three levels of programming.

1. Application code

 Application code is responsible for generating the interface you see upon starting Framework. It also controls

generation of the graphs during data-acquisition (but not the data displayed on the graphs).

2. Explain™ Scripts

 Selecting an experiment from the drop-down Experiment menu in the Gamry Framework environment executes

the corresponding script.

 The Explain script creates dialog boxes, configures the potentiostat hardware, acquires the data, displays them in

a graph on the screen, and saves the data to a file.

3. Compiled Code

 Compiled code implements the Gamry application and many of the objects that are used by Explain language.

 You have no access to this level. However, Gamry can still customize applications that require programming at

this level.

http://www.gamry.com/application-notes/

Figure 1. Selecting an Explain™ script for editing.

What is an Explain™ Script and What are Object-oriented Languages?

The Explain™ language is a scripted,

sequential, object-oriented language. To

a non-programmer that statement makes

little or no sense. The following section is

an introduction to object-oriented

languages.

Explain is a scripted language because

Explain programs are composed of text

characters that can be edited with a text-

editor program. The Gamry Framework

includes its own editor that you should

use to edit Explain scripts. Select File

Open from the main menu in the Gamry

Framework and a dialog box called Open

a script for editing appears (Figure 1).

The files listed in that window with the

extension *.exp are editable Explain scripts.

Explain scripts are sequential because they are executed from the beginning of the text file to the end. This allows you to

easily follow the flow of the program. The exception to this rule is when a call is made to a function (See box: Functions

in the Explain™ Language). When Explain encounters an unknown function it automatically searches the script for that

function. The function is commonly set aside from the main body of the script by placing it near the end.

Object-oriented languages are built around “classes of objects”. Classes may be considered collections of physical items

that share characteristics. Examples of classes are the different shapes, CIRCLE, SQUARE, and TRIANGLE (by

convention, classes are in uppercase in Explain). Each is a different class of objects. All objects that are a member of the

CIRCLE class know that they are round; an object that is a member of the SQUARE class knows that it has four sides of

equal length that are at right angles.

An object created from a class is called an “instance” of that class. For example, the following Explain code might create

an instance of the CIRCLE class.

Shape1 = CIRCLE.New (Tag, X-coordinate, Y-coordinate, Radius, Color)

This new object is called Shape1. It is an instance of a CIRCLE class.

The most important idea in object-oriented languages is that objects combine both data structure and behavior into a

single entity. An example is the CIRCLE class we previously discussed. The object has attributes such as a tag, a position,

a radius, and a color.

Objects created from specific classes also know how to perform actions. Placing a period between the object and the

action designates these actions. The following code is an example of how to create a new object of the class CIRCLE.

Shape1 = CIRCLE.New (“My Circle”, 2, 5, 10, Blue)

Functions in the Explain™ Language

Explain™ is a procedural language based on function calls and sequential execution of statements—similar to FORTRAN, Pascal

and C. Explain, like common procedural languages, uses functions to manage execution flow. A function is a named part of an

Explain script that can be invoked from other parts of the script as often as needed. As in most modern functional languages, each

function has a name, an argument list, and a list of statements to be executed in sequence. Not all functions are Explain language

functions contained within the script itself, Explain also includes library functions written by Gamry Instruments in compiled C.

Explain follows the programming doctrine of an object-oriented language. Object-oriented languages have become quite popular

(for example Visual Basic
®
 and Java™). Object-oriented languages have their own terminology, referring to class and object, that

can be confusing.

Explain Script Function

Common.exp

Common

Functions.exp

Library routines for functions and

objects.

signal.exp

curve.exp

pstat.exp

Information regarding specific

potentiostat hardware control

math.exp

stats.exp Mathematical routines.

Explain.exp Master include file: Includes all of the

above files.

Muxlib.exp Driver information for peripheral

instruments, e.g., multiplexers and

temperature controllers.

Table 1. Commonly-used Explain "include" files

The object called Shape1 is created with the tag of My Circle, it knows that it is located at 2, 5 on the screen, it has a

radius of 10, and the circle is drawn in blue.

In Explain, objects must be created before they can be used. That is why most Explain scripts contain a large number of

object declarations using the .New function near the beginning of the script.

Once objects have been created they can perform certain tasks. For example now that we have created the object

Shape1 we could use CIRCLE.Draw to draw our circle on the screen. The following code would actually draw the

circle on the screen.

 Shape1.Draw()

Notice that because this object was previously defined it knows the tag, coordinate, radius, and color information.

Because the object contains the data about its own properties, and knowledge of how to perform actions, complicated

sequences can be easily condensed. For example if the .Move function was defined to move an object from one location

to another on the screen the following code would erase the circle Shape1, and redraw it at the origin of our x-y graph.

 Shape1.Move (0,0)

Another advantage is that there can be multiple instances of the same class. An unlimited number of instances of the

CIRCLE class with different names could be created. Each circle would contain its own information regarding tag,

coordinate, radius, and color that could be used when those objects performed actions.

Layout of a Typical Explain™ Script

The following discussion will use the Explain™ script for the corrosion test Polarization Resistance (Polarization

Resistance.exp) as an example of the flow in a typical Explain script. Specific examples from the script will be shown

and described. The script in its entirety can be found in Appendix A.

All Explain scripts begin with a brief description of what the script does. These “comment lines” use the semicolon (;) as

the identifier that tell the Explain interpreter to ignore the rest of the line. For example, the following three lines are the

first three lines of the script.

; Explain Script for Polarization Resistance Experiment

; Copyright (c) Gamry Instruments

; Version 6

There are a number of lines of code in Appendix A that contain a semicolon near the middle, or end, of a line of code.

Semicolons do not need to be at the beginning of a line. The Explain interpreter treats the remainder of a line of code as

a comment once it reaches a semicolon.

The next section is the “included” files. These

statements allow functions to be added to a script by

“including” other complete Explain scripts. The

function of include statements is to allow commonly

used pieces of code to be collected in a few places,

and then be called when scripts are executed. In the

polarization resistance experiment, the following files

are included:

include "explain6.exp"

include "DC105.exp"

The explain6.exp script is contained in almost all

other scripts, for it contains a list of “includes” that add

functions to the Gamry Framework. Some more

common Explain scripts are listed in Table 1.

Following the included files is the function Main ()

declaration. This is a very important line, for the Gamry

Framework looks for function Main () to indicate the beginning of an Explain script.

In the layout of an Explain script, the object definition section begins immediately following the function Main(). This is

a series of CLASS.New functions where new objects are created and default information is placed in these objects. This

is identical to our CIRCLE.New example earlier. The script must create all objects needed for a specific experiment.

Title = LABEL.New ("TITLE", 80, "Polarization Resistance", "Test Identifier")

Notes = NOTES.New ("NOTES", 400, NIL, "&Notes...")

Output = OUTPUT.New ("OUTPUT", "POLRES.DTA","Output &File")

Area = QUANT.New ("AREA", 1.0, "Sample &Area (cm²)")

LABEL, NOTES, OUTPUT, and QUANT are just a few examples of classes of objects that can be defined. See the Gamry

Framework On-line Help for definitions of each of these classes.

Following the creation of the needed objects, the script displays a setup window on the computer screen. This is done

using the function Setup ("Title", Item1, Item2, Item3,). The following code displays the setup box

in the Polarization Resistance.exp script:

 result = Setup ("Polarization Resistance"

& ,PstatSelect.Selector (SELECTOR_ASTERISK)

& ,Title

& ,Output

& ,Notes

& ,VInit

& ,VFinal

& ,Scan

& ,Sample

& ,Area

& ,Density

& ,Equiv

& ,BetaA

& ,BetaC

& ,Condit

& ,Delay

& ,IRComp

&)

The ampersand (&) symbol is used to disregard indentations. Program statements are generally one line long, but due to

the limitations of the computer display they may extend beyond the edge of the screen. To simplify following the code,

visually long program statements may be chopped into pieces displayed in sequential lines. When this is done the “&”

allows the Explain interpreter to ignore any indentations on these segments of code.

After you have entered the parameters for the experiment and clicked the OK button, the setup window closes and the

script creates a Pstat object using the information from the setup box.

Pstat = PstatSelect.CreatePstat ("PSTAT", "PstatClass")

Different models of potentiostats can be installed in the same computer, so it is important to create the Pstat object

containing information about the potentiostat immediately after the setup box is closed.

If any error-checking needs to be performed on the information entered in the setup box, it is done after the setup box

closes. In general, this includes checking the number of data points to be acquired to see if they exceed the software

limitations, checking to see if the data file already exists, and checking to see if any other script is using the potentiostat. If

everything is deemed okay, the script exits the loop around that setup function.

Important: In Explain there are no BEGIN or END statements. Explain uses indentation (tabs) to indicate blocks of

statements. The Polarization Resistance.exp script has all of the statements left justified until after the

function Main () declaration. The lines of code that are indented indicate that they are the block of code to be

executed when the function Main () is called. The majority of the sample script is part of the function Main ().

Figure 2. An Example of the STDOUT Window.

Stdout ("Experimental Parameters")

Stdout ("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^")

Stdout ("Potentiostat: ", Config (GAMRYINI, Pstat.Section (), "Label"))

Stdout ("Start Time: ", TimeStamp ())

Stdout ("")

Stdout ("Initial Voltage: ", VInit.Show ())

Stdout ("Final Voltage: ", VFinal.Show ())

Stdout ("Scan Rate: ", Scan.Value (), " mV/s")

Stdout ("Sample Period: ", Sample.Value (), " s")

Stdout ("")

Stdout ("Beta A: ", BetaA.Value (), " V/Decade")

Stdout ("Beta C: ", BetaC.Value (), " V/Decade")

Stdout ("")

Stdout ("Specimen Area: ", Area.Value (), " cm^2")

Stdout ("Specimen Density: ", Density.Value (), " g/cm^3")

Stdout ("Specimen Equivalent Weight: ", Equiv.Value (), " ")

Stdout ("")

if (Condit.Check ())

Stdout ("Conditioning Time: ", Condit.V1 (), " s @", Condit.V2 (), " V")

if (Delay.Check ())

Stdout ("Delay Time: ", Delay.V1 (), " s")

if (IRComp.Value ())

Stdout ("IR Correction: On")

else

Stdout ("IR Correction: Off")

Figure 3. Explain script that produced the STDOUT window shown in Fig. 2.

The Explain script then writes the experimental

parameters to the STDOUT (StanDard OUTput)

window shown in Figure 2. Gain access to the

STDOUT window during an experiment to review

the setup parameters by selecting it from the curve

drop-down list (F5) as shown in Figure 2.

The function Stdout() writes information to the

STDOUT window. The value of objects, such as

those in the setup box, can be written to the

STDOUT window using object.Show() or

object.Value() statements. A combination of

text strings in quotations and object.Show() or

object.Value() can be used to create

complicated statements in the STDOUT window. The code shown in Figure 3 was used to produce the STDOUT

window shown in Figure 2.

After the STDOUT window is created, the experimental parameters are saved as a header in the data file. This is

performed using the Printl() function. It is very similar to the function StdOut() except that the information is

written to the data file. Most setup objects have a Printl() instance function; this function knows how to print the

object’s tag and other information to the data file. The following is an example of Printl() functions from the

polarization resistance script and the corresponding output. In some of the calls to the Printl function, \t is used to

insert a tab into the file.

After the STDOUT and data file contain the setup parameters, the script then controls the potentiostat and performs the

experiment. Before the actual polarization resistance scan starts, the script checks to see if the conditioning toggle box is

selected and performs a conditioning step if it was selected. The following code checks the state of the toggle and

performs the conditioning. This condition function is available because it is defined in DC105.exp in beginning of this

script.

if (Condit.Check ())

if (Condition (Pstat, Condit.V1 (), Condit.V2 ()

& ,IRComp.Value (),0.1*Area.Value ()) eq FALSE)

return

The script then checks the value of the open-circuit measurement toggle box and performs an open-circuit potential

measurement for either the entered time and stability setting, or for 10 seconds. It then writes the value of the open-

circuit potential to the data file. Again note that the OCDelay function is available because it is a function that was also

included in DC105.exp.

if (Delay.Check ())

OCDelay (Pstat, Delay.V1 (), Delay.V2 () * 0.001)

else

OCDelay (Pstat, 10.0, NIL)

Printl ("EOC\tQUANT\t", POTEN.Eoc (), "\tOpen Circuit (V)")

Executing the call to the Cpiv function performs the actual electrochemical experiment.

; Run the curve

Cpiv (Pstat, VInit.VsEref ()

& ,VFinal.VsEref ()

& ,Scan.Value ()*0.001

& ,Sample.Value ()

& ,IRComp.Value ()

& ,EQDelay.Value ()

&)

Because this is a function call, the Gamry Framework searches the script to see where the function Cpiv () is defined

and performs the actions in that block of code. The function Cpiv is defined near the end of the polarization resistance

script. When the function call is executed, the information contained in a number of objects is “passed” to the Cpiv

This Explain Code “Prints This to the Data file”

Printl ("POLRES") POLRES

Title.Printl () TITLE Polarization Resistance

Printl ("DATE\t", DateStamp ()) DATE 11/20/2000

Printl ("TIME\t", TimeStamp ()) TIME 0:01:55

Notes.Printl () NOTES 1

Pstat.Printl () PC4 Pstat0

VInit.Printl () VINIT -2.00000E-002 T

VFinal.Printl () VFINAL 2.00000E-002 T

Scan.Printl () SCANRATE 1.25000E-001

Sample.Printl () SAMPLETIME 2.00000E+000

Area.Printl () AREA 1.00000E+000

Density.Printl () DENSITY 7.87000E+000

Equiv.Printl () EQUIV 2.79200E+001

BetaA.Printl () BETAA 1.20000E-001

BetaC.Printl () BETAC 1.20000E-001

Printl ("CONDIT\t", Condit.Check ()) CONDIT F

Printl ("TCONDIT\t", Condit.V1 ()) TCONDIT 15

Printl ("ECONDIT\t", Condit.V2 ()) ECONDIT 0

Printl ("DELAY\t", Delay.Check ()) DELAY F

Printl ("TDELAY\t", Delay.V1 ()) TDELAY 300

Printl ("RDELAY\t", Delay.V2 ()) RDELAY 0.1

IRComp.Printl () IRCOMP F

Table 1. Entering setup parameters into the datafile.

SIGNAL Class Description

V(I)RAMP Ramp voltage (or current)

V(I)CONST Hold voltage (or current) constant

V(I)UPDOWN Ramp voltage (or current) up and down

V(I)STEP Double voltage (or current) steps

V(I)MSTEP Multiple step voltage (or current) steps

FRA Sine wave

Table 3. Available CURVE classes within Explain.

function. These objects are listed in the parentheses following the Cpiv function call shown above. These objects are

passed to the Cpiv object because function Cpiv () is defined outside of the function Main () portion of the script.

Explain needs to know what information from the function Main () must be known in the Cpiv function.

We now skip down to the function Cpiv () section of the script to continue the sequence of this script. The first

function in this section of code is the InitializePstat() function call. This requires a search of the script for the

block of code in which the function InitializePstat() is created. This section of code immediately follows the

block of code for the function Cpiv.

The InitalizePstat function contains a number of Pstat.SetHardware functions. These functions control the

hardware settings on the Pstat object (which is the physical potentiostat that will perform the experiment this script is

executing). For example, the code:

Pstat.SetCtrlMode (PstatMode)

sets the instrument in potentiostat control mode (all Gamry potentiostats can operate in either potentiostat, galvanostat, or

zero resistance ammeter modes). The InitalizePstat function collects all of the hardware control settings in one

location in the script, usually at the end, so that the hardware settings are clear. For a complete description of all

hardware function parameters, see the On-line Help in the Gamry Framework environment.

Once the InitializePstat function is executed, the script returns to the Cpiv function and continues. The next step

is to create a Signal object. Signal objects are a special class of objects in Explain. The physical parallel to the

SIGNAL class would be the function generator. A Signal object creates the waveform that will be applied by the

potentiostat to the electrochemical cell. In the Polarization Resistance.exp script the object Signal is

created as an instance of the VRAMP (Voltage Ramp) class. The VRAMP class needs to know the initial potential (Vinit),

final potential (Vfinal), scan rate, and sample time. With these parameters, the Signal object creates the discrete

voltage values for the experiment. The object Signal is created with parameters by the following code:

Signal = VRAMP.New ("SIGNAL", Pstat, VInit, VFinal, ScanRate, SampleTime)

This is an example of an object created using information

stored in other objects. Various SIGNAL classes exist for

different types of waveforms that can be sent to the

instrument. Table 3 is a list of some of the SIGNAL classes.

Additional SIGNAL classes may be added as Gamry adds

new applications to our software suite.

When Signal has been created it is assigned (or

connected) to the Pstat object using the

Pstat.SetSignal function. This is analogous to

connecting a wire from the function generator to the analog

potentiostat.

CURVE-class objects control data-acquisition, generation of

plots in real time, and real-time stopping of data-acquisition functions (stop at current/voltage limits or stabilities). The

following line of code

Curve = CPIV.New ("CURVE", Pstat)

creates a new object called Curve. It is an instance of the CPIV class. Table 4 contains a list of available CURVE classes

within Explain.

Various different electrochemical experiments require different types of CURVE objects. Notice also that specific SIGNAL

objects are used with each CURVE object. For example a CPIV requires a Signal that is an instance function of a

VRAMP or VCONST class. These signal objects supply voltage information. CPIV would not function with a Signal

created from the IRAMP class because this class supplies current.

CURVE objects also control the real-time plots during data acquisition. The following line of code sets the plot mode to

linear current (I) versus voltage (V), which is one of the plot modes available for objects created from the CPIV class.

CURVE

Class

Description

CPIV Control potential and

measure I and V

CIIV Control I and measure I and V

OCV Open-circuit voltage

CV Cyclic voltammetry

CGEN Curve GENeric

NSCURVE NoiSe CURVE

FRACURVE Electrochemical impedance

spectroscopy CURVE

IVT Measure I and V versus time

GALVCOR GALVanic CORosion

CCAL Calibration

Table 4. Some CURVE classes within Explain.

Curve.SetPlot (CPIV_LINIV, NIL, NIL, NIL)

The Polarization Resistance.exp script does not

contain any run-time testing criteria in its CPIV object for

stopping the data-acquisition. The addition of a maximum current

limit to the Polarization Resistance.exp script is

discussed in “Commonly Requested Changes to Explain™

Scripts,” which is available by contacting Gamry or through the

Gamry web site www.gamry.com/application-notes/.

A series of “bookkeeping” activities must follow the generation of

the CURVE object before it can run the experiment. These

include:

 Initializing the Signal object to ensure that it is in a known

state:

Pstat.InitSignal ()

 Activating the cell switch on the potentiostat:

Pstat.SetCell (CellOn) ; Turn on the

cell

 Displaying a message to the user in the lower left-hand

corner of the window to inform if something is happening:

Notify ("Autoranging")

 Finding the best current-to-voltage converter range at which to start the experiment:

Pstat.FindIERange ()

 And again displaying a message that something is happening:

Notify ("Running Curve")

 Making the Curve object the active object allows the data to be displayed on the screen:

Curve.Activate ()

 And finally running the Curve object performs the experiment.

Curve.Run ()

 When the Curve object is finished running (the experiment is done), the potentiostat cell switch is turned off.

Pstat.SetCell (CellOff)

 And the data contained in the Curve object are written to the data file.

Curve.Printl ()

Dawdle ()

The program displays the active Curve object on the screen, waiting until you hit the F2 key, because of the

Dawdle () function. When you hit the F2 key, then the script returns to the point where the CPIV function was called.

The output file is closed, the Pstat object is closed, and the experiment ends.

Conclusion

The Explain™ programming language provides an unrivaled degree of flexibility in customizing experiments while

preserving a simple point-and-click interface. Standard experiments provided by Gamry can be performed with the click

of a button. More-complicated experiments may be created from the scripts provided with the Gamry system by copying

those scripts and making modifications. The Explain programming language and user-accessible object-oriented scripts

provide an easily modified platform for electrochemical experiments.

http://www.gamry.com/application-notes/

Appendix A

Polarization Resistance.exp

; Explain Script for Polarization Resistance Experiment

; Copyright (c) Gamry Instruments, Inc.

; Version 6

include "explain6.exp"

include "DC105.exp"

function Main ()

 ; Create Objects which are used in the following Setup dialog

 PstatSelect = PSTATSELECT.New ("PSTAT", "&Pstat")

 Title = LABEL.New ("TITLE", 80, "Polarization Resistance", "Test

&Identifier")

 Notes = NOTES.New ("NOTES", 400, NIL, "&Notes...")

 Output = OUTPUT.New ("OUTPUT", "POLRES.DTA","Output &File")

 Area = QUANT.New ("AREA", 1.0, "Sample &Area (cm^2)")

 Density = QUANT.New ("DENSITY", 7.87, "Densit&y (g/cm^3)")

 Equiv = QUANT.New ("EQUIV", 27.92, "Equiv. &Wt")

 BetaA = QUANT.New ("BETAA", 0.120, "&Beta An.(V/Dec)") ;1.05

 BetaC = QUANT.New ("BETAC", 0.120, "&Beta Cat.(V/Dec)") ;1.05

 VInit = POTEN.New ("VINIT", -0.020, TRUE,"Initial &E (V)")

 VFinal = POTEN.New ("VFINAL", 0.020, TRUE,"Final &E (V)")

 Scan = QUANT.New ("SCANRATE", 0.125,"Scan Ra&te (mV/s)")

 Sample = QUANT.New ("SAMPLETIME", 2.0, "Sa&mple Period (s)")

 Condit = TWOPARAM.New ("CONDIT", FALSE, 15.0, 0.0, "Conditionin&g", "Time(s)",

"E(V)")

 Delay = TWOPARAM.New ("DELAY", FALSE, 300.0, 0.1, "Init. De&lay","Time(s)",

"Stab.(mV/s)")

 IRComp = TOGGLE.New ("IRCOMP", FALSE, "IR Com&p")

 EQDelay = QUANT.New ("EQDELAY", 0.0, "Equil. &Time (s)")

 result = SetupRestore ("DC105.SET", "POLRES"

& ,PstatSelect.Selector (SELECTOR_ASTERISK)

& ,Title

& ,Output

& ,Notes

& ,VInit

& ,VFinal

& ,Scan

& ,Sample

& ,Area

& ,Density

& ,Equiv

& ,BetaA

& ,BetaC

& ,Condit

& ,Delay

& ,IRComp

& ,EQDelay

&)

 loop

 result = Setup ("Polarization Resistance"

& ,PstatSelect.Selector (SELECTOR_ASTERISK)

& ,Title

& ,Output

& ,Notes

& ,VInit

& ,VFinal

& ,Scan

& ,Sample

& ,Area

& ,Density

& ,Equiv

& ,BetaA

& ,BetaC

& ,Condit

& ,Delay

& ,IRComp

& ,EQDelay

&)

 if (result eq FALSE) ; Cancel

 return

 ;Pick the potentiostat

 Pstat = PstatSelect.CreatePstat ("PSTAT", "PstatClass")

 EstimatedPoints = CheckRampPoints (VFinal, VInit, Scan, Sample, 1000)

 OCStyle = CheckOCStyle (VInit, VFinal, VFinal)

 if (TestMaxPoints (EstimatedPoints, OCStyle))

 continue

 ; Acquire output file

 if (Output.Open () ne TRUE)

 continue

 ; Force Writing of File before Close

 Output.SetCommit (TRUE)

 if (CheckInstrument (Pstat, CALCHECK_DC) ne TRUE)

 continue

 ; Acquire use of the requested Potentiostat.

 if (Pstat.Open () ne TRUE)

 continue

 break

 result = SetupSave ("DC105.SET", "POLRES"

& ,PstatSelect.Selector (SELECTOR_ASTERISK)

& ,Title

& ,Output

& ,Notes

& ,VInit

& ,VFinal

& ,Scan

& ,Sample

& ,Area

& ,Density

& ,Equiv

& ,BetaA

& ,BetaC

& ,Condit

& ,Delay

& ,IRComp

& ,EQDelay

&)

 Headline (Title.Value ()) ; Show user something's happening

 ; Write the settings for the experiment to the STDOUT window for later review

 Stdout ("Experimental Parameters")

 Stdout ("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^")

 Stdout ("Potentiostat: ", Config (GAMRYINI, Pstat.Section (), "Label"))

 Stdout ("Start Time: ", TimeStamp ())

 Stdout ("")

 Stdout ("Initial Voltage: ", VInit.Show ())

 Stdout ("Final Voltage: ", VFinal.Show ())

 Stdout ("Scan Rate: ", Scan.Value (), " mV/s")

 Stdout ("Sample Period: ", Sample.Value (), " s")

 Stdout ("")

 Stdout ("Beta A: ", BetaA.Value (), " V/Decade")

 Stdout ("Beta C: ", BetaC.Value (), " V/Decade")

 Stdout ("")

 Stdout ("Specimen Area: ", Area.Value (), " cm^2")

 Stdout ("Specimen Density: ", Density.Value (), " g/cm^3")

 Stdout ("Specimen Equivalent Weight: ", Equiv.Value (), " ")

 Stdout ("")

 if (Condit.Check ())

 Stdout ("Conditioning Time: ", Condit.V1 (), " s @", Condit.V2 (), "

V")

 if (Delay.Check ())

 Stdout ("Delay Time: ", Delay.V1 (), " s")

 if (IRComp.Value ())

 Stdout ("IR Correction: On")

 else

 Stdout ("IR Correction: Off")

 Notify2(Pstat.Label())

 ; Write Header info, setup data, etc. to output file.

 Printl ("EXPLAIN")

 Printl ("TAG\tPOLRES")

 Title.Printl ()

 Printl ("DATE\tLABEL\t", DateStamp (), "\tDate")

 Printl ("TIME\tLABEL\t", TimeStamp (), "\tTime")

 Notes.Printl ()

 Pstat.Printl ()

 VInit.Printl ()

 VFinal.Printl ()

 Scan.Printl ()

 Sample.Printl ()

 Area.Printl ()

 Density.Printl ()

 Equiv.Printl ()

 BetaA.Printl ()

 BetaC.Printl ()

 Condit.Printl ()

 Delay.Printl ()

 IRComp.Printl ()

 EQDelay.Printl ()

 ; Condition the electrode

 if (Condit.Check ())

 if (Condition (Pstat, Condit.V1 (), Condit.V2 (), IRComp.Value

(),0.1*Area.Value ()) eq FALSE)

 return

 ; Measure Eoc

 if (Delay.Check ())

 OCDelay (Pstat, Delay.V1 (), Delay.V2 () * 0.001)

 else

 OCDelay (Pstat, 10.0, NIL)

 Printl ("EOC\tQUANT\t", POTEN.Eoc (), "\tOpen Circuit (V)")

 ; Run the curve

 Cpiv (Pstat, VInit.VsEref ()

& ,VFinal.VsEref ()

& ,Scan.Value ()*0.001

& ,Sample.Value ()

& ,IRComp.Value ()

& ,EQDelay.Value ()

&)

 Output.Close ()

 Pstat.Close ()

 return

; Run a controlled potential IV curve from VInit to VFinal

function Cpiv (Pstat, VInit, VFinal, ScanRate, SampleTime, IRToggle, EQDelay)

 InitializePstat (Pstat, IRToggle)

 Pstat.PrintHardwareSettings ()

 ; Create a ramp generator for this pstat

 Signal = VRAMP.New ("SIGNAL", Pstat, VInit, VFinal, ScanRate, SampleTime)

 Signal.SetAcquisitionControl(NIL, NIL, NIL, SAMPLINGMODE_NR)

 Pstat.SetSignal (Signal)

 Curve = CPIV.New ("CURVE", Pstat)

 Curve.SetPlot (CPIV_LINIV, NIL, NIL, NIL)

 Pstat.InitSignal ()

 Pstat.SetCell (CellOn) ; Turn on the cell

 Notify ("Autoranging")

 Pstat.FindIERange ()

 Pstat.SetIERangeLowerLimit (Pstat.IERange ())

 Equilibrate (Index (EQDelay))

 Notify ("Running Polarization Resistance Curve")

 Curve.Activate ()

 Curve.Run ()

 Pstat.SetCell (CellOff)

 Curve.Printl ()

 DisplayOverloadStatus(Curve)

 Notify ("Experiment done, press \"F2-Skip\" to continue")

 Dawdle ()

 return

function InitializePstat (Pstat, IRToggle)

 DC105InitializePstat (Pstat, IRToggle)

 Pstat.SetVchRange (2.0)

 return

PC6, ECM8, Gamry Framework, and Explain are trademarks of Gamry Instruments, Inc. Microsoft, Windows, and Visual Basic are registered trademarks

of the Microsoft Corporation. Java is a trademark of Sun Microsystems, Inc.

Application Note Rev. 2.0 3/20/2015 Copyright 1990–2015 Gamry Instruments, Inc.

734 Louis Drive Warminster PA 18974 Tel. 215 682 9330 Fax 215 682 9331 www.gamry.com info@gamry.com

http://www.gamry.com/

