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The DRT is a powerful tool for EIS analysis

Versatile: can adapt to virtually any system

Intuitive: clear visualization of time constants

Experimental data DRT
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...but there’s a lot to understand

What does the DRT really represent?

How does the DRT relate to equivalent circuit models?
Which algorithm should | use?

How should | tune the DRT?

How can | distinguish “real” peaks from “false” peaks?

How can | extract quantitative parameters?



Preview

1. Understanding the DRT concept

2. Alightintroduction to DRT estimation algorithms

3. Using the DRT



1. Understanding the DRT concept



A quick note on terminology

Relaxation: measured electrical signal arising from a process in the sample

Process: a physicochemical process, e.g. ion transport, surface reaction

Relaxation: frequency domain Relaxation: time domain
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The DRT concept: what is the DRT?

DRT = Distribution of relaxation times



The DRT concept: what is the DRT?

DRT = Distribution of resistance over relaxation times

Nyquist plot
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The DRT concept: what is the DRT?

DRT = Distribution of resistance over relaxation times

Nyquist plot
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The RC element is a single peak in the DRT
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Broad DRT peaks correspond to “depressed” semicircles
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DRT peak area quantifies process resistance
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DRT peak area quantifies process resistance
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Series circuit additions account for non-RC phenomena

Non-RC Rohm L
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Series additions need to be adapted to the system under study

Model system (diffusion) Naive DRT fit
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Series additions need to be adapted to the system under study

Model system (diffusion)
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The DRT provides an intuitive visualization of impedance
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Summary of key concepts

1.

DRT = distribution of RC-type resistance over timescales

Common circuit elements (RC, RQ) have exact DRT equivalents

Peaks correspond to RC-type processes (Nyquist semicircles)

Peak width corresponds to frequency dispersion

Peak area = process resistance

Non-RC features are fitted with series circuit additions
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Advantages

No a priori model needed: great for initial analysis, complex systems

Intuitive visualization: clarifies time constants and guides model selection

System-agnostic: good for automated and high-throughput analysis

20



Misconceptions and limitations

Misconception: The DRT is a deterministic transformation of impedance

Reality: DRT transform is strongly influenced by calculation method

Misconception: The DRT “improves resolution” of spectra

Reality: Reduces visual overlap, but resolution is determined by data

Limitation: The DRT is an empirical representation of the data

Best practice: Use domain knowledge to reasonably interpret the DRT
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2. Alightintroduction to DRT estimation algorithms
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Circuit model for fitting illustration
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The DRT must be numerically estimated

ZDRT(a))=J y(nt) - 1T ot dint
“Ill-posed inversion”
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Ill-posed inversion: many possible solutions

Solution 1
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How do we find the “right” solution?

26



How do we find a reasonable solution?

Fourier
transform

Penalized
regression

Discrete
parametric

Machine
learning

\

> Occam’s razor: “simpler is better”
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How do we find a reasonable solution?

Fourier
transform

Penalized
regression

Discrete
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Machine
learning
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A general framework for DRT algorithms

1. Representation: how do we represent (approximate) the DRT?
2. Complexity control: how do we define a “reasonable” solution?
3. Objective function: how do we balance simplicity with goodness of fit?

4. Optimization: how do we find the optimum of the objective function?

Surya Effendy et al., 2020. J. Electrochem. Soc. 167, 106508.

29



A general framework for DRT algorithms

1. Representation: how do we represent (approximate) the DRT?
Occam’s razor
2. Complexity control: how do we define a “reasonable” solution?

3. Objective function: how do we balance simplicity with goodness of fit?

4. Optimization: how do we find the optimum of the objective function?

Surya Effendy et al., 2020. J. Electrochem. Soc. 167, 106508.
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Representation: linear combination of basis functions

Radial basis function (RBF) Linear combination of RBFs
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Complexity control: quantifying simplicity/complexity

Data
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Complexity control: quantifying simplicity/complexity

Solution 1 - “complex” Large curvature
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Objective function: balancing simplicity with the data

Minimize C to find a balanced solution:

N 5 00 dzy 2
— Zl_zlwi'|Zmode1,i_Zmeas,i| + 1 - . d In 72 dint

Penalty Curvature
strength penalty

Sum of squared errors

A determines the tradeoff between fit error and simplicity
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Objective function: balancing simplicity with the data

Estimated DRT
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Objective function: balancing simplicity with the data
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Hierarchical Bayesian models: more flexibility

Ridge regression Hierarchical ridge regression

“The DRT should be uniformly smooth” “The DRT should generally be smooth”

Uniform penalty: 4 = constant Variable penalty: 4 = A(In 1)
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Tuning: finding the right balance

How do we select a suitable penalty for experimental data?

Manual tuning

Cross-validation

Automatic tuning
(Bayesian)

\

> Apply metrics to define the optimal balance

_/
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Summary of key concepts

1. Many DRT solutions are possible for a single spectrum

2. DRT algorithms use Occam’s razor to find a reasonable solution
3. DRT complexity can be quantified by curvature

4. The objective function balances simplicity with goodness of fit

5. Tuningis necessary to find the right balance
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3. Using the DRT
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A DRT workflow: fitting

Tuning

'

KK test H

DRT
estimation

H

Evaluate fit
quality

Good fit?
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Software demo ()
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A DRT workflow: analysis
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Software demo (ll)
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Summary of key concepts

1. Start by checking data validity (KK test)

2. Tune the DRT using a reproducible procedure

3. Always check the impedance reconstruction (and residuals)
4. Beware of false peaks

5. Be aware of frequency bounds and series additions (e.g. ohmic resistance)
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Setting up for success: experimental best practices

1. Ensure thatvalid, high-fidelity spectra are collected
1. Linear, stable, KK-compliant
2. Maximize signal-to-noise ratio

3. Measure relevant frequency range

2. Measure spectra under multiple conditions to aid interpretation
1. E.g.:vs.temperature, partial pressure, DC voltage/current

2. Observe DRT variations with respect to conditions

46



Closing thoughts



Extensions: probabilistic analysis

[ Regression )
Relaxation magnitude (DRT)
=N
\_ T
i Classification
Relaxation probability (PFRT)
(D) [¢b]
2 3
© ©
Q Q
O o
Q 8 A A A
N ] >

(

J. Huang et al., 2023, Electrochim. Acta 443, 141879.
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Extensions: faster impedance via domain joining

High-frequency EIS Joint-domain DRT Time-domain measurement
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Conventional duration: 20 minutes
Joint-domain duration: 1 minute

Accelerate measurement =210x via DRT transformation of time-domain data

J. Huang et al., 2024, Joule 8(7), 2049-2072. 49



y (Q)

Extensions: 2D(+) spectroscopy

Solid-state battery: operando DRT

1D DRT: Charge ‘ 2D DRT: Charge 2D DRT: Discharge
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Visualizing the DRT vs. state of charge (SoC) provides detailed insight

J. Huang & W. Zeier, 2025, ACS EL (submitted). 50



Are you ready to use the DRT?

The DRT is a great tool to incorporate into your EIS workflow
The DRT can complement other modeling approaches

Just remember: it’s not magic!

Contact: H jdhuang-csm / hybrid-drt
jdhuang@mines.edu B jdhuang-csm / bayes-drt2
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https://github.com/jdhuang-csm/bayes-drt2
https://github.com/jdhuang-csm/hybrid-drt
github.com/jdhuang-csm

Additional resources: publications

e M. Saccoccio etal., 2014, Electrochim. Acta 147, 470-48:
An introduction to penalized regression and tuning via cross-validation

 F. Ciucci & C. Chen, 2015, Electrochim. Acta 167, 439-454:
An introduction to hierarchical ridge regression

* J. Huangetal., 2021, Electrochim. Acta 367, 137493:
Development of a self-tuning algorithm using a hierarchical Bayesian model

* J. Huangetal., 2023, Electrochim. Acta 443, 141879:
How to understand, evaluate, and improve DRT accuracy

* J. Huangetal., 2024, Joule 8 (7), 2049-2072:
A method to obtain the DRT from time-domain data, accelerating EIS
measurement =210x
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https://doi.org/10.1016/j.electacta.2014.09.058
https://doi.org/10.1016/j.electacta.2015.03.123
https://doi.org/10.1016/j.electacta.2020.137493
https://doi.org/10.1016/j.electacta.2023.141879
https://doi.org/10.1016/j.joule.2024.05.003

Additional resources: software

Package Description GUI | Tuning A;';‘:;‘:‘afti‘::/
DRTtools | onwia ordinary ricge regression | | Menvet| X
bayes-drt Python package for self-tuning DRT estimation X Auto \/
Python package for faster self-tuning DRT
hybrid-drt estimation, DRT conversion to equivalent X Auto \/

circuits, and various tools for DRT analysis

Package used for software demo
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http://www.drttools.com/
https://github.com/jdhuang-csm/bayes-drt2
https://github.com/jdhuang-csm/hybrid-drt
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