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The DRT is a powerful tool for EIS analysis
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Versatile: can adapt to virtually any system

Intuitive: clear visualization of time constants



…but there’s a lot to understand

What does the DRT really represent?

How does the DRT relate to equivalent circuit models?

Which algorithm should I use?

How should I tune the DRT?

How can I distinguish “real” peaks from “false” peaks?

How can I extract quantitative parameters?
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Preview

1. Understanding the DRT concept

2. A light introduction to DRT estimation algorithms

3. Using the DRT
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1. Understanding the DRT concept

2. A light introduction to DRT estimation algorithms

3. Using the DRT
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A quick note on terminology

Relaxation: measured electrical signal arising from a process in the sample

Process: a physicochemical process, e.g. ion transport, surface reaction
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Relaxation: frequency domain Relaxation: time domain
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The DRT concept: what is the DRT?

8

DRT = Distribution of relaxation times



The DRT concept: what is the DRT?
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DRT = Distribution of resistance over relaxation times

Nyquist plot

106 Hz
10-2 Hz



The DRT concept: what is the DRT?
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DRT = Distribution of resistance over relaxation times

Nyquist plot
DRT

P1
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The RC element is a single peak in the DRT
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𝜏RC = 10−3 s

Nyquist DRT

𝑓RC =
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2𝜋𝜏RC
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𝜏RC = 𝑅 ∙ 𝐶



Broad DRT peaks correspond to “depressed” semicircles 
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Nyquist DRT
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DRT peak area quantifies process resistance
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DRT peak area quantifies process resistance
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Nyquist DRT
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Series circuit additions account for non-RC phenomena
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Series additions need to be adapted to the system under study
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Naïve DRT fitModel system (diffusion)

Directly fitting CPE/diffusion impedance perturbs the DRT
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Series additions need to be adapted to the system under study
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P1
CPE

P1

DRT fit with CPE

𝑍DRT CPE

Model system (diffusion)

Incorporating a CPE into the DRT model prevents DRT perturbation



The DRT provides an intuitive visualization of impedance
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Summary of key concepts

1. DRT = distribution of RC-type resistance over timescales

2.   Common circuit elements (RC, RQ) have exact DRT equivalents

2.   Peaks correspond to RC-type processes (Nyquist semicircles)

3.   Peak width corresponds to frequency dispersion

4.   Peak area = process resistance

5.   Non-RC features are fitted with series circuit additions
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Advantages

No a priori model needed: great for initial analysis, complex systems

Intuitive visualization: clarifies time constants and guides model selection

System-agnostic: good for automated and high-throughput analysis
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Misconceptions and limitations

Misconception: The DRT is a deterministic transformation of impedance

Reality: DRT transform is strongly influenced by calculation method

Misconception: The DRT “improves resolution” of spectra

Reality: Reduces visual overlap, but resolution is determined by data

Limitation: The DRT is an empirical representation of the data

Best practice: Use domain knowledge to reasonably interpret the DRT
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1. Understanding the DRT concept

2. A light introduction to DRT estimation algorithms

3. Using the DRT
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Circuit model for fitting illustration
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Exact DRT Noisy impedance



𝑍DRT 𝜔 = න
−∞

∞

𝛾 ln 𝜏 ∙
1

1 + 𝑗𝜔𝜏
d ln 𝜏

The DRT must be numerically estimated
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𝑍(𝜔) 𝛾 ln 𝜏

Deterministic
(analytical)

“Ill-posed inversion”

Measured 
spectrum

Unknown 
DRT



Ill-posed inversion: many possible solutions
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Solution 1 Solution 2 Solution 3

Data



How do we find the “right” solution?
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How do we find a reasonable solution?
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Penalized 
regression

Machine 
learning

Fourier 
transform

Discrete 
parametric

Occam’s razor: “simpler is better”



How do we find a reasonable solution?
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A general framework for DRT algorithms

1. Representation: how do we represent (approximate) the DRT?

2. Complexity control: how do we define a “reasonable” solution?

3. Objective function: how do we balance simplicity with goodness of fit?

4. Optimization: how do we find the optimum of the objective function?

29Surya Effendy et al., 2020. J. Electrochem. Soc. 167, 106508.



A general framework for DRT algorithms

1. Representation: how do we represent (approximate) the DRT?

2. Complexity control: how do we define a “reasonable” solution?

3. Objective function: how do we balance simplicity with goodness of fit?

4. Optimization: how do we find the optimum of the objective function?
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Occam’s razor



Representation: linear combination of basis functions
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Radial basis function (RBF) Linear combination of RBFs

RBF at 𝜏𝑖Magnitude

𝛾model(ln 𝜏) =෍
𝑖=1

𝑀

𝑥𝑖 ∙ 𝜙𝑖( ln 𝜏)



Complexity control: quantifying simplicity/complexity
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Solution 1 – “complex” Large curvature

Small curvatureSolution 2 – “simple”

Data



Complexity control: quantifying simplicity/complexity
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Solution 1 – “complex” Large curvature

Small curvatureSolution 2 – “simple”

Simpler solutions should have smaller curvature

Data



ℂ = ෍
𝑖=1

𝑁

𝑤𝑖 ∙ 𝑍model,𝑖 − 𝑍meas,𝑖
2

+ 𝜆 ∙ න
−∞

∞ 𝑑2𝛾

𝑑 ln 𝜏2

2

𝑑 ln 𝜏

Objective function: balancing simplicity with the data
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Sum of squared errors
Curvature 

penalty
Penalty 
strength

Minimize ℂ to find a balanced solution:

𝜆 determines the tradeoff between fit error and simplicity



Objective function: balancing simplicity with the data
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Objective function: balancing simplicity with the data
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Hierarchical Bayesian models: more flexibility

37

Ridge regression Hierarchical ridge regression

Uniform penalty: 𝜆 = constant

“The DRT should be uniformly smooth” “The DRT should generally be smooth”

Variable penalty: 𝜆 = 𝜆(ln 𝜏)



Tuning: finding the right balance
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How do we select a suitable penalty for experimental data?

Cross-validation

Automatic tuning 
(Bayesian)

Manual tuning

Apply metrics to define the optimal balance



Summary of key concepts

1.   Many DRT solutions are possible for a single spectrum

2.   DRT algorithms use Occam’s razor to find a reasonable solution

3.   DRT complexity can be quantified by curvature

4.   The objective function balances simplicity with goodness of fit

5.   Tuning is necessary to find the right balance
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1. Understanding the DRT concept

2. A light introduction to DRT estimation algorithms

3. Using the DRT
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A DRT workflow: fitting
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Software demo (I)



DRT

A DRT workflow: analysis
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Peak 
identification

Peak 
quantification

Model 
selection

Domain 
knowledge

Process 
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Software demo (II)



Summary of key concepts

1.   Start by checking data validity (KK test)

2.   Tune the DRT using a reproducible procedure

3. Always check the impedance reconstruction (and residuals)

4. Beware of false peaks

5.   Be aware of frequency bounds and series additions (e.g. ohmic resistance)
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Setting up for success: experimental best practices

1. Ensure that valid, high-fidelity spectra are collected

1. Linear, stable, KK-compliant

2. Maximize signal-to-noise ratio

3. Measure relevant frequency range

2. Measure spectra under multiple conditions to aid interpretation

1. E.g.: vs. temperature, partial pressure, DC voltage/current

2. Observe DRT variations with respect to conditions
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Closing thoughts
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Extensions: probabilistic analysis

48J. Huang et al., 2023, Electrochim. Acta 443, 141879.



Extensions: faster impedance via domain joining
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High-frequency EIS
𝑓 > 100 Hz

Time-domain measurement
𝑓 < 100 Hz

2 MHz

100 Hz

Frequency 
domain

Time
domain

Joint-domain DRT
2 MHz – 10 mHz

Accelerate measurement ≥10x via DRT transformation of time-domain data

Conventional duration: 20 minutes
Joint-domain duration: 1 minute

J. Huang et al., 2024, Joule 8(7), 2049-2072.



Extensions: 2D(+) spectroscopy
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Solid-state battery: operando DRT

Visualizing the DRT vs. state of charge (SoC) provides detailed insight

J. Huang & W. Zeier, 2025, ACS EL (submitted).



Are you ready to use the DRT?

The DRT is a great tool to incorporate into your EIS workflow

The DRT can complement other modeling approaches

Just remember: it’s not magic!
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Contact:
jdhuang@mines.edu

https://github.com/jdhuang-csm/bayes-drt2
https://github.com/jdhuang-csm/hybrid-drt
github.com/jdhuang-csm


Additional resources: publications

• M. Saccoccio et al., 2014, Electrochim. Acta 147, 470–48:
An introduction to penalized regression and tuning via cross-validation

• F. Ciucci & C. Chen, 2015, Electrochim. Acta 167, 439–454:
An introduction to hierarchical ridge regression

• J. Huang et al., 2021, Electrochim. Acta 367, 137493: 
Development of a self-tuning algorithm using a hierarchical Bayesian model

• J. Huang et al., 2023, Electrochim. Acta 443, 141879:
How to understand, evaluate, and improve DRT accuracy

• J. Huang et al., 2024, Joule 8 (7), 2049–2072:
A method to obtain the DRT from time-domain data, accelerating EIS 
measurement ≥10x
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https://doi.org/10.1016/j.electacta.2014.09.058
https://doi.org/10.1016/j.electacta.2015.03.123
https://doi.org/10.1016/j.electacta.2020.137493
https://doi.org/10.1016/j.electacta.2023.141879
https://doi.org/10.1016/j.joule.2024.05.003


Additional resources: software
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Package Description GUI Tuning Automated/
batch fits

DRTtools User-friendly graphical interface for DRT 
estimation via ordinary ridge regression Manual

bayes-drt Python package for self-tuning DRT estimation Auto

hybrid-drt
Python package for faster self-tuning DRT 
estimation, DRT conversion to equivalent 

circuits, and various tools for DRT analysis
Auto

Package used for software demo

http://www.drttools.com/
https://github.com/jdhuang-csm/bayes-drt2
https://github.com/jdhuang-csm/hybrid-drt
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