
 

Equivalent Circuit Modeling in EIS 
  

 
Introduction 

Electrochemical Impedance Spectroscopy (EIS) is a very 
powerful tool for the analysis of complex 
electrochemical systems.  See the Basics of EIS 
Application Note 
(http://www.gamry.com/App_Notes/EIS_Primer/EIS_Pri
mer.htm) on the Gamry Instruments website 
(www.gamry.com) for a comprehensive introduction to 
EIS.  For the most part, information in that Application 
Note will not be repeated here.  

This Note is a practical discussion of the most common 
method for EIS data analysis.   It should provide even a 
novice with the basic approach for converting an EIS 
spectrum into meaningful insights into the physical 
processes within the electrochemical cell.  It 
intentionally avoids most of the complex math 
associated with EIS data analysis.  

 
EIS Basics 

In EIS,  you measure an electrochemical cell’s complex 
impedance over a wide range of AC frequencies.  
Typically, several cell elements and cell characteristics 
contribute to the system’s EIS spectrum.  A partial list of 
possible elements includes:  

• Electrode Double Layer Capacitance 

• Electrode Kinetics 

• Diffusion Layer 

• Solution Resistance 

Unfortunately, the system’s impedance at any given 
frequency usually depends on more than one cell 
element.  This greatly complicates the analysis of EIS 
spectra.  

The most common method used to analyze EIS spectra 
is equivalent circuit modeling.  You simulate the cell 
incorporating the elements mentioned above.  The 
behavior of each element is then described in terms of  
“classical” electrical components (resistors, capacitors, 

inductors) plus a few specialized electrochemical 
elements (such as Warbug diffusion elements). 

The first step in the process is an educated guess.  You 
predict the system elements that you feel will play a part 
in the cell’s impedance.  You then build these elements 
into an Equivalent Circuit Model.  The arrangement of 
the elements into logical series and parallel 
combinations is critical to the success of the modeling 
effort.  

Each element in the model has a known impedance 
behavior.  The impedance of the element depends on 
the element type and the value(s) of the parameter(s) 
that characterize that element.  For example, the 
impedance of a capacitor excited by a sine wave at 
frequency f is described by the formula:  
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ZC is the complex impedance, j is the Ö-1, f is the 
frequency in Hertz and C is the capacitor’s value in 
Farads.  When you formulate a model of the system, 
you generally do not know the value of the parameters 
for the elements in the system.  For example, you know 
that a painted metal has a coating capacitance but you 
do not know the value of that capacitance. 

 
Graphical Model Editor 

The Gamry Instruments EIS300 Electrochemical 
Impedance Spectroscopy Software includes a graphical 
Model Editor that you can use to build an equivalent 
circuit model.  Figure 1 shows the Model Editor editing 
the Paint Model supplied with the EIS300.   This model 
represents one possible assignment of the circuit 
elements to physical phenomena in a failing paint film 
on a metal surface.  See the EIS Primer mentioned 
above for a description of this model.  

You can use the graphical Model Editor to make up 
quite complicated circuits. One advantage of this 
approach is that you do not have to deal with the 



complex circuit descriptor codes that some older 
modeling programs use.  

Figure 1. Model Editor 

The second example in this Applications Note deals 
with the problem of fitting EIS data to a model when the 
model is not known a priori.  Prior to this, we will 
discuss the easier case of fitting data to a known model. 

 

Fitting the Model to Your Data 

Once you have a model that you feel represents your 
chemical system, you use a non-linear least squares 
fitting program to fit the model to the experimental 
data.   This program attempts to minimize the deviation 
between the spectrum of the model and the 
experimental data spectrum.  

Similar to other EIS modeling programs, the EIS300 
fitting program uses the Levenberg-Marquardt technique 
to adjust the parameter values of the elements in the 
model. The mathematical details of the fitting process 
are well beyond the scope of this applications note.  

One of the more difficult tasks in equivalent circuit 
modeling is determining the initial values for the 
model’s parameters.   The optimization program needs 
to start with values (often called seed values) for all 
parameters.   If the initial values are far from the optimal 
values, the optimization program may be unable to find 
the best fit.   The first example in this Application Note 
demonstrates this problem. 
 

Example 1: Dummy Data Matching the Coated Metal 
Model 

This example discusses fitting a model to data when the 
form of the model is known.  In order to insure a good 

fit, the data was recorded on an electronic dummy cell 
made up from electronic components.  The components 
were arranged in the topology of the paint model seen 
in Figure 1.   

Figure 2 shows the original EIS spectrum in a Bode 
format.  Gamry recommends that the initial estimate for 
fitting parameters be tested in the Bode format – the 
lack of frequency information in the Nyquist format 
makes it difficult to estimate capacitor values.  

Figure 2. Original EIS Spectrum of Paint Model 
Dummy Cell 

If you fit the Paint Model to this data without adjusting 
the parameter “seed values” (default is all parameters set 
to 1.00), you get a Math Error message and a very poor 
fit (Figure 3).   The magnitude fit does not appear on the 
graph at all, and the phase fit (the solid line) does not 
follow the shape of the experimental data phase. 
 

Figure 3. Fitting With All Seed Values at 1.00 



This error is caused by poor initial values for the model’s 
parameters.  The Levenberg-Marquardt algorithm in the 
EIS300 analysis requires initial values that are within a 
decade or two of their final values before it can fit 
properly.   The inability to fit when the seed values are 
far from the optimal values is not unique to the EIS300.  
Other EIS model fitting programs use the same fitting 
algorithm and require the same accuracy in the initial 
values. 

So how do you estimate initial values?   It takes a 
calculator and a little understanding of the behavior of 
the elements in the circuit.  Basically, we try to find 
areas in the EIS curve where the model’s impedance is 
dominated by one element and calculate the 
approximate value for that element at that frequency. 

Examine the model in Figure 1.  Remember that the 
impedance of a capacitor approaches zero at high 
frequency and approaches infinity at low frequency.  At 
low frequency, the impedance of the capacitors in the 
model is very high.  Both Cc and Cf are in parallel with a 
resistor.  When the capacitors impedance is high, the 
resistor’s impedance dominates.  At the lowest 
frequency in Figure 1, the impedance magnitude is 
about 107 ohms and the phase is near 0° (indicative of a 
resistor) .  This is the sum of Ru,  Rp, and Rf.   Assuming 
that Rf > Rp > Ru, you can estimate that Rf is 107 
ohms.   You have your first seed value! 

The drop in magnitude below 1 Hz is due to Cf.  At 10 
Hz, the impedance of the system is about 106 ohms.   
Use this in the equation for the impedance of a 
capacitor, ignoring the j in the equation and using f = 
10 Hz:  
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This is the second seed value.  

The area in the middle of the spectrum where the 
magnitude plot approaches a horizontal line looks like 
another resistor.  This must be Rp and we can assign a 
seed value of about 100 kW.   

The high frequency region appears to be capacitive.  
The impedance at 10 kHz looks to be about 10 kW.  
Following the procedure above, but with 104 ohms at 
104 Hz, you get a capacitance value of about 10-9 
Farads.  This is the seed value for Cc.  

The high frequency data never becomes resistive, 
indicated by a constant value of impedance.  Ru must 
be smaller than the highest frequency impedance 
magnitude.  Therefore, use 1W for the seed value.  

Now that we have a set of seed values, try the fit again.  
Type the seed values into the parameter fields.  You can 
enter the capacitors in E format, e.g., enter 10-9 as 1E-
9.   Press the Preview button.  You see a plot similar to 
that in Figure 4.  

Notice that the shape of the magnitude and phase plots 
are similar for the seed curves and the experimental 
data.  In general, whenever these shapes are similar and 
the seed values are within a factor of 100 of the optimal 
value, the model will fit.  

When you press Calculate, you see that the fit is indeed 
excellent (Figure 5).  Table 1 shows the parameter 
values calculated by the fitter, versus the values of the 
components used to make the dummy cell.  
 

Element Fit Value Component Value 

Rf 2.012E+07 ohms 2.0E+07 ohms 
Cf 2.155E-08 F 2.2E-08 F 

Rp 1.004E+05 ohms 1.00E+05 ohms 

Cc 9.962E-10 F 1E-09 F 
Ru 4.185E+02 ohms 4.02E+02 ohms 

Table 1. Fit Values and Component Values 

 
Notice the large uncertainty in the fit value for Ru and 
the poor agreement between the real Ru value and the 
fit value.   This is easily explained.  Remember that the 
impedance curve never became resistive at high 
frequency.  In fact, a slight phase shift at high frequency 
is the only indication that Ru is present.  As a rule of 
thumb, if an element’s impedance is not a significant 
factor in the cell impedance in the fit’s frequency range, 
the fit’s parameter value for that element will be poor 
and the uncertainty in its value will be large.   



Figure 4. Seed Values – Paint Model  

 

Figure 5. Final Fit – Paint Model 
  
 

Example 2: Rechargeable Alkaline Battery  

In this example, the model is unknown prior to starting 
EIS data analysis.  The sample is a commercial AA 
rechargeable alkaline battery.  Spectra were recorded 
using Gamry’s Hybrid EIS mode after each cycle of a 
repeated charge/discharge cycle.   The EIS spectra from 
the charged state were more interesting than the 
discharged state spectra, so one of the charged state 
spectra was chosen for this example.   

The spectrum recorded following the first charge cycle is 
seen in Figure 6 (Bode format) and Figure 7 (Nyquist 
format).  The Bode plot shows behavior very different 
from the previous example, so it has been transformed 
to show linear impedance magnitudes instead of the 
more common log magnitudes.  The impedance 
magnitude changes by less than 30% as the frequency is 
varied from by more than 3 decades!  A variation this 
small displayed on a log scale is very confusing, so a 

linear scale was chosen.  The variation in phase is also 
very small – less than 5° of phase change occurred.  

Figure 6. Bode Plot of Charged Battery 
 
The Nyquist plot (Figure 7) shows a depressed semi-
circle, typical of a Randles element.  At low frequency, 
the plot shows a well-developed diagonal line at an 
angle of 45°, indicative of a Warburg impedance.  

Figure 7. Nyquist Plot of Charged Battery 
 

What is a good starting point for a model of this system?  

We know that the sample is a battery measured in a 
two-electrode mode, so it has two electrode/electrolyte 
interfaces.   

 
 



Figure 8. First Cut Model – Battery Data 

We can assume that each interface has a double layer 
capacitance and a charge transfer resistance.  Let’s 
assign the Warburg impedance to only one interface.  

We also know that there is a resistance in the solution 
path between the electrodes.  This is the battery’s 
equivalent series resistance (esr).   Putting these facts 
and assumptions into a model, we get the diagram 
shown in Figure 8.   

Once again, we need seed values before the fit will 
converge (a mathematical term meaning a good fit will 
be obtained!).  Looking at the model (and temporarily 
ignoring the Warburg impedance), the limiting 
impedance at high frequency is Resr.   Examining the 
Bode plot, you see that the impedance at high 
frequency is about 0.7 W.   Use this as an initial value 
for Resr.    

The low frequency impedance (at 10 Hz) is about 0.85 
W. Still ignoring the Warburg impedance, this is the sum 
of Re1, Re2 and Resr.  Since our estimate for Ru is 0.7 
W, our estimate for Re1 plus Re2is 0.15 W.We have no 
good way of dividing up the contributions of the two 
resistors, so we’ll assign each a seed value of 0.075 W.   

We also cannot visually separate the contributions from 
Ce1 and Ce2.  Between about 6000 Hz and 100 Hz, 
the cell impedance changes by about 0.15 W.  Plugging 
the “mid-point” of 1000 Hz into the capacitive 
impedance equation given above, Ce1 and Ce2 in series 
have a value of about 1 mF.  Capacitors in series 
combine similarly to resistors in parallel so we can use a 
seed value of 2 mF each for Ce1 and Ce2.  

When you preview the seed curve using these values 
plus a value of 1.0 for the Warburg coefficient, you get a 
plot that looks like Figure 9.   

Figure 9. Preview of Seed Curve – Rough Estimates  

The shape of both the magnitude and phase curves 
looks similar to the shape of the data curves, so we’re 
safe if we select the Calculate button. 

If we want to improve the initial values, we can note 
that the increase in impedance at low frequency is 
caused by the Warbug impedance.  Lowering the 
Warburg coefficient will make the increase smaller at 
any given frequency.  Figure 10 shows the seed value 
curve with the Warburg coefficient lowered to 0.35.   

Figure 10. Seed Curve with Warburg Coefficient of 
0.35  

With either set of seed values, selecting Calculate Best 
Fit results in the plot shown in Figure 11. 



Figure 11. Fit with Initial Model   

The fit is not bad, but there are significant errors, 
especially in the phase.  Let’s try replacing both 
capacitors with constant phase elements (CPE).  The 
new model is shown in Figure 12. 

Figure 12. Battery Model with CPEs   

We can use the values found in the previous fit to 
calculate seed values for the new CPE components. The 
previous fit values can be seen in a table in Figure11.    
Remember that the first CPE parameter is equivalent to 
the inverse of the capacitance.  Therefore, the seed 
value for CPEe2 is 1/0.075 or 13.3 and the seed value 
for CPEe1 is 1/0.0027 or 370.  Use 1.0 as the seed value 
for both CPE’s alpha parameters.     

When we enter these new seed values into the new 
model and press Calculate Best Fit, we see the plot in 
Figure 13.  

 Figure 13. Fit with a Second Cut Model 

A careful comparison of Figure 11 and Figure 13 shows 
that the CPE elements have slightly improved the phase 
fit in the region between 10 Hz and 100 Hz.  The 
improvement may not be large enough to justify the 
inclusion of the CPEs and their arbitrary alpha 
parameter.  

Note that one cannot distinguish between the anode 
and cathode interfaces of a battery when only a two 
terminal EIS measurement is available.  If a reference 
electrode can be placed in the cell, the impedance of a 
single interface can be measured. 

 
Summary 

Fitting an EIS model  to experimental data can be a fairly 
straightforward task.  It requires a little knowledge of the 
cell being studied and its mechanisms and a basic 
understanding of the behavior of cell elements. 

If you do not have a model, start by examining the 
data.  Look for valleys in the phase that indicate 
inflection points in the data.  Use your knowledge of the 
cell and the experimental data to propose a model.  In 
many cases, the standard models provided with the 
EIS300 will provide either a final model or a good 
starting point for development of your own model. 

Gamry does not recommend that you add elements to a 
model until all visible errors in the fit are eliminated.  
Models that include elements with no basis in the 
chemical processes in the cell may provide a pretty fit, 
but offer no practical information about the cell’s 
behavior. 

Once you have established a model, first estimate the 
resistor values.  Look for horizontal regions on a Bode 



plot and assign them to individual resistors or series 
combinations of resistors.  Estimate the value of 
capacitors in the model as demonstrated above.  Don’t 
try to be too accurate when you make these estimates.  
Any value within a factor of ten of the true value is a 
good starting point.   

Use the Preview feature to check your estimates.  This is 
a good time to fine-tune the initial values for a Warburg 
impedance in the model.  In general, the fit algorithm 

will converge whenever the shape of the seed curve is 
similar to the shape of the data curve.  If the two curves 
have a different shape, the fitting routine is likely to fail. 

Finally, perform the fit and examine the result. If the fit 
does not look good, you may have to adjust the model 
and repeat the procedure.  
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